Positive ground state solutions for the critical Klein–Gordon–Maxwell system with potentials
نویسندگان
چکیده
منابع مشابه
Existence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight
This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight. We apply the variational methods to prove the existence of ground state solution.
متن کاملNew conditions on ground state solutions for Hamiltonian elliptic systems with gradient terms
This paper is concerned with the following elliptic system:$$ left{ begin{array}{ll} -triangle u + b(x)nabla u + V(x)u=g(x, v), -triangle v - b(x)nabla v + V(x)v=f(x, u), end{array} right. $$ for $x in {R}^{N}$, where $V $, $b$ and $W$ are 1-periodic in $x$, and $f(x,t)$, $g(x,t)$ are super-quadratic. In this paper, we give a new technique to show the boundedness of Cerami sequences and estab...
متن کاملPositive solutions for asymptotically periodic Kirchhoff-type equations with critical growth
In this paper, we consider the following Kirchhoff-type equations: $-left(a+bint_{mathbb{R}^{3}}|nabla u|^{2}right)Delta u+V(x) u=lambda$ $f(x,u)+u^{5}, quad mbox{in }mathbb{R}^{3},$ $u(x)>0, quad mbox{in }mathbb{R}^{3},$ $uin H^{1}(mathbb{R}^{3}) ,$ where $a,b>0$ are constants and $lambda$ is a positive parameter. The aim of this paper is to study the existence of positive ...
متن کاملGround State Solutions for an Asymptotically Linear Diffusion System
This article concerns the diffusion system ∂tu−∆xu + V (x)u = g(t, x, v), −∂tv −∆xv + V (x)v = f(t, x, u), where z = (u, v) : R × RN → R2, V (x) ∈ C(RN , R) is a general periodic function, g, f are periodic in t, x and asymptotically linear in u, v at infinity. We find a minimizing Cerami sequence of the energy functional outside the Nehari-Pankov manifold N and therefore obtain ground state so...
متن کاملThe Ground State Energy of Dilute Bose Gas in Potentials with Positive Scattering Length
The leading term of the ground state energy/particle of a dilute gas of bosons with mass m in the thermodynamic limit is 2π~a̺/m when the density of the gas is ̺, the interaction potential is non-negative and the scattering length a is positive. In this paper, we generalize the upper bound part of this result to any interaction potential with positive scattering length, i.e, a > 0 and the lower b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis: Theory, Methods & Applications
سال: 2012
ISSN: 0362-546X
DOI: 10.1016/j.na.2012.02.023